Integer Points in Knapsack Polytopes and s-Covering Radius

نویسندگان

  • Iskander Aliev
  • Martin Henk
  • Eva Linke
چکیده

Given a matrix A ∈ Zm×n satisfying certain regularity assumptions, we consider for a positive integer s the set Fs(A) ⊂ Zm of all vectors b ∈ Zm such that the associated knapsack polytope P (A, b) = {x ∈ R>0 : Ax = b} contains at least s integer points. We present lower and upper bounds on the so called diagonal s-Frobenius number associated to the set Fs(A). In the case m = 1 we prove an optimal lower bound for the s-Frobenius number, which is the largest integer b such that P (A, b) contains less than s integer points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase Transition in Random Integer Programs

We study integer programming instances over polytopes P (A, b) = {x : Ax ≤ b} where the constraint matrices A are random – the rows of the constraint matrices are chosen i.i.d. from a spherically symmetric distribution. We address the radius of the largest inscribed ball that guarantees integer feasibility of such random polytopes with high probability. We show that for m = 2 √ , there exist co...

متن کامل

Integer Feasibility of Random Polytopes

We study integer programming instances over polytopes P (A, b) = {x : Ax ≤ b} where the constraint matrix A is random, i.e., its entries are i.i.d. Gaussian or, more generally, its rows are i.i.d. from a spherically symmetric distribution. The radius of the largest inscribed ball is closely related to the existence of integer points in the polytope. We show that for m = 2 √ , there exist consta...

متن کامل

Maximum Entropy Gaussian Approximation for the Number of Integer Points and Volumes of Polytopes

We describe a maximum entropy approach for computing volumes and counting integer points in polyhedra. To estimate the number of points from a particular set X ⊂ Rn in a polyhedron P ⊂ Rn we construct a probability distribution on the set X by solving a certain entropy maximization problem such that a) the probability mass function is constant on the set P ∩X and b) the expectation of the distr...

متن کامل

NP-Completeness of Non-Adjacency Relations on Some 0-1 Polytopes

In this paper, we discuss the adjacency structures of some classes of 0-1 polytopes including knapsack polytopes, set covering polytopes and 0-1 polytopes represented by complete sets of implicants. We show that for each class of 0-1 polytope, non-adjacency test problems are NP-complete. For equality constrained knapsack polytopes, we can solve adjacency test problems in pseudo polynomial time.

متن کامل

/ On Facets of Knapsack Equality Polytopes

The 0/1 knapsack equality polytope is, by deenition, the convex hull of 0/1 solutions of a single linear equation. A special form of this polytope | where the deening linear equation has nonnegative integer coeecients and the number of variables having co-eecient one exceeds the right-hand-side | is considered. Equality constraints of this form arose in a real-world application of integer progr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2013